TUTORIAL NOTES FOR MATH4220

JUNHAO ZHANG

1. THE MAXIMUM PRINCIPLES (HEAT EQUATION)

Recall the maximum principles.
1.1. Notations. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain, we set $\Omega_{T}:=(0, T] \times \Omega=$ $(t, x): 0<t \leq T, x \in \Omega$, we denote by $\partial_{p} \Omega_{T}$ the parabolic boundary of Ω_{T} which is defined as $\partial_{p} \Omega_{T}:=\{t=0\} \times \bar{\Omega} \cup(0, T] \times \partial \Omega$. As usual, we denote B_{r} to be the ball with radius r in \mathbb{R}^{n}, we set $Q_{r}:=\left(-r^{2}, 0\right] \times B_{r}$. Moreover, we denote by $C^{a, b}\left(\Omega_{T}\right)$ the collection of functions in Ω_{T} which are C^{a} in t and C^{b} in x.

1.2. Theorems.

Theorem 1 (Weak maximum principle). Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain and T be a positive constant. Let $u \in C^{1,2}\left(\Omega_{T}\right) \cap C\left(\bar{\Omega}_{T}\right)$ with $u_{t}-\Delta u \leq 0(\geq 0)$ in Ω. Then,

$$
\sup _{\Omega_{T}} u=\sup _{\partial_{p} \Omega_{T}} u\left(\inf _{\Omega_{T}} u=\inf _{\partial_{p} \Omega_{T}} u\right) .
$$

Consequently, for u satisfies $u_{t}-\Delta u=0$,

$$
\inf _{\partial_{p} \Omega_{T}} u \leq u(x) \leq \sup _{\partial_{p} \Omega_{T}} u, \quad \forall x \in \Omega
$$

Theorem 2 (Strong maximum principle). Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain and T be a positive constant. Let $u \in C^{1,2}\left(\Omega_{T}\right) \cap C\left(\bar{\Omega}_{T}\right)$ with $u_{t}-\Delta u \leq 0(\geq 0)$ in Ω, and suppose there exists a point $(\tau, y) \in \Omega_{T}$ for which $u(\tau, y)=\sup _{\Omega_{T}} u\left(\inf _{\Omega} u\right)$. Then $u \equiv u(\tau, y)$ is constant in $(0, \tau) \times \Omega$. Consequently the solution to heat equation cannot assume an interior maximum or minimum value unless it is constant.
1.3. Applications. Let us show some results given by the mean value theorems and the maximum principles.
Example 3 (Interior gradient estimates). Suppose $u \in C^{1,2}\left(Q_{1}\right) \cap C\left(\bar{Q}_{1}\right)$ satisfies

$$
u_{t}-\Delta u=0 \quad \text { in } Q_{1}
$$

Then there holds

$$
\sup _{Q_{\frac{1}{2}}}|D u| \leq c \sup _{\partial_{p} Q_{1}}|u|,
$$

where $c=c(n)$ is a positive constant. In particular for any $\alpha \in[0,1]$ there holds

$$
|u(t, x)-u(t, y)| \leq c|x-y|^{\alpha} \sup _{\partial_{p} Q_{1}}|u|, \quad \forall t>0, x, y \in B_{\frac{1}{2}}
$$

where $c=c(n, \alpha)$ is a positive constant.

Proof. Direct computation shows that

$$
\left(\partial_{t}-\Delta\right)\left(|D u|^{2}\right)=-2 \sum_{i, j=1}^{n}\left(D_{i j} u\right)^{2}+2 \sum_{i=1}^{n} D_{i} u D_{i}\left(\partial_{t} u-\Delta u\right)=-2 \sum_{i, j=1}^{n}\left(D_{i j} u\right)^{2},
$$

moreover,
$\left(\partial_{t}-\Delta\right)\left(\varphi|D u|^{2}\right)=\left(\partial_{t} \varphi-\Delta \varphi\right)|D u|^{2}-4 \sum_{i, j=1}^{n} D_{i} \varphi D_{j} u D_{i j} u-2 \varphi \sum_{i, j=1}^{n}\left(D_{i j} u\right)^{2}, \quad \forall \varphi \in C_{0}^{1}\left(B_{1}\right)$.
By taking $\varphi=\eta^{2}$ for some $\eta \in C_{0}^{1}\left(B_{1}\right)$ with $\eta \equiv 1$ in $B_{\frac{1}{2}}$, we obtain by the Hölder's inequality,

$$
\begin{aligned}
\left(\partial_{t}-\Delta\right)\left(\eta^{2}|D u|^{2}\right)= & \left(2 \eta \partial_{t} \eta-2 \eta \Delta \eta-2|D \eta|^{2}\right)|D u|^{2} \\
& -8 \eta \sum_{i, j=1}^{n} D_{i} \eta D_{j} u D_{i j} u-2 \eta^{2} \sum_{i, j=1}^{n}\left(D_{i j} u\right)^{2} \\
\leq & \left(2 \eta \partial_{t} \eta-2 \eta \Delta \eta+6|D \eta|^{2}\right)|D u|^{2} \leq C|D u|^{2},
\end{aligned}
$$

where C is a positive constant depending only on η. Moreover, since

$$
\left(\partial_{t}-\Delta\right)\left(u^{2}\right)=-2|D u|^{2}+2 u\left(\partial_{t} u-\Delta u\right)=-2|D u|^{2},
$$

by choosing α large enough we get

$$
\Delta\left(\eta^{2}|D u|^{2}+\alpha u^{2}\right) \leq 0,
$$

then by the maximum principle, we have

$$
\sup _{Q_{1}}\left(\eta^{2}|D u|^{2}+\alpha u^{2}\right) \leq \sup _{\partial_{p} Q_{1}}\left(\eta^{2}|D u|^{2}+\alpha u^{2}\right),
$$

which implies

$$
\sup _{Q_{\frac{1}{2}}}|D u| \leq c \sup _{\partial_{p} Q_{1}}|u|,
$$

where $c=c(n)$ is a positive constant. Therefore we have

$$
|u(t, x)-u(t, y)| \leq c|x-y|^{\alpha} \sup _{\partial_{p} Q_{1}}|u|, \quad \forall t>0, x, y \in B_{\frac{1}{2}} .
$$

Example 4 (Li-Yau estimate). Suppose u is a non-negative function satisfies

$$
\partial_{t} u-\Delta u=0 \quad \text { in }(0, T] \times \mathbb{R}^{n}
$$

Then there holds

$$
\frac{|D u|^{2}}{u^{2}}-\frac{\partial_{t} u}{u} \leq \frac{n}{2 t},
$$

In particular, for arbitrary $\left(t_{1}, x_{1}\right),\left(t_{2}, x_{2}\right) \in(0, T] \times \mathbb{R}^{n}$ with $t_{2}>t_{1}>0$, there holds

$$
\frac{u\left(t_{1}, x_{1}\right)}{u\left(t_{2}, x_{2}\right)} \leq\left(\frac{t_{2}}{t_{1}}\right)^{\frac{n}{2}} e^{\frac{\left|x_{2}-x_{1}\right|^{2}}{4\left(t_{2}-t_{1}\right)}} .
$$

Proof. We divide the proof into several steps.
Firstly, we derive some equations involving $v=\log u$. For v, we have

$$
\partial_{t} v-\Delta v=|D v|^{2}
$$

moreover, denote $w=|D v|^{2}$, then

$$
\partial_{t} w-\Delta w=2 D v \cdot D w-2 \sum_{i, j=1}^{n}\left(D_{i j} v\right)^{2}
$$

Secondly, for $\alpha \in(0,1)$, set $f=\alpha|D v|^{2}-v_{t}$, then

$$
\partial_{t} f-\Delta f=2 D v \cdot D f-2 \alpha \sum_{i, j=1}^{n}\left(D_{i j} v\right)^{2} .
$$

Since

$$
\begin{aligned}
\sum_{i, j=1}^{n}\left(D_{i j} v\right)^{2} & \geq \frac{1}{n}(\Delta v)^{2}=\frac{1}{n}\left(|D v|^{2}-v_{t}\right)=\frac{1}{n}\left((1-\alpha)|D v|^{2}+f\right)^{2} \\
& \geq \frac{1}{n}\left(f^{2}+2(1-\alpha)|D v|^{2} f+(1-\alpha)^{2}|D v|^{4}\right) \\
& \geq \frac{1}{n}\left(f^{2}+2(1-\alpha)|D v|^{2} f\right),
\end{aligned}
$$

therefore

$$
\partial_{t} f-\Delta f \leq 2 D v \cdot D f-\frac{2 \alpha}{n}\left(f^{2}+2(1-\alpha)|D v|^{2} f\right)
$$

Thirdly, for arbitrary $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\varphi \geq 0$, let $g=t \varphi f$, we have

$$
\begin{aligned}
& t \varphi \partial_{t} f=g_{t}-\frac{g}{t} \\
& t \varphi D f=D g-\frac{D \varphi}{\varphi} g \\
& t \varphi \Delta f=\Delta g-2 \frac{D \varphi}{\varphi} \cdot D g+\left(2 \frac{|D \varphi|^{2}}{\varphi^{2}}-\frac{\Delta \varphi}{\varphi}\right) g .
\end{aligned}
$$

Therefore substituting $\partial_{t} f, D f, \Delta f$ by the above relations, we obtain

$$
\begin{aligned}
& t \varphi\left(\partial_{t} g-\Delta g\right)+t(D \varphi-\varphi D v) \cdot D g \\
\leq & g\left[\varphi-\frac{2 \alpha}{n} g+t\left(2 \frac{|D \varphi|^{2}}{\varphi}-\Delta \varphi+\frac{n}{4 \alpha(1-\alpha)} \frac{|D \varphi|^{2}}{\varphi}\right)\right]
\end{aligned}
$$

By letting $\varphi=\eta^{2}$ for $\eta \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\eta \geq 0$, we get

$$
\begin{aligned}
& t \eta^{2}\left(\partial_{t} g-\Delta g\right)+t\left(2 \eta D \eta-\eta^{2} D v\right) \cdot D g \\
\leq & g\left[\eta^{2}-\frac{2 \alpha}{n} g+t\left(6|D \eta|^{2}-2 \eta \Delta \eta+\frac{n}{\alpha(1-\alpha)}|D \eta|^{2}\right)\right]
\end{aligned}
$$

Let η_{0} be a cutoff function with $0 \leq \eta_{0} \leq 1$ in B_{1} and $\eta_{0} \equiv 1$ in $B_{\frac{1}{2}}$, then let $\eta(x)=\eta_{0}\left(\frac{x}{R}\right)$, we have

$$
t \eta^{2}\left(\partial_{t} g-\Delta g\right)+t\left(2 \eta D \eta-\eta^{2} D v\right) \cdot D g \leq g\left(1-\frac{2 \alpha}{n} g+\frac{C_{\alpha} t}{R^{2}}\right)
$$

We claim that

$$
\begin{equation*}
1-\frac{2 \alpha}{n} g+\frac{C_{\alpha} t}{R^{2}} \geq 0 \quad \text { in }(0, T] \times B_{R} \tag{1.1}
\end{equation*}
$$

Denote $h:=1-\frac{2 \alpha}{n} g+\frac{C_{\alpha} t}{R^{2}}$, suppose to the contrary, that h has a negative minimum at $\left(t_{0}, x_{0}\right) \in Q_{T}$, then $h\left(t_{0}, x_{0}\right)<0, \partial_{t} h\left(t_{0}, x_{0}\right) \leq 0, D h\left(t_{0}, x_{0}\right)=0$, and
$\Delta h\left(t_{0}, x_{0}\right) \geq 0$, therefore $g\left(t_{0}, x_{0}\right)>0, \partial_{t} g\left(t_{0}, x_{0}\right) \geq 0, D g\left(t_{0}, x_{0}\right)=0$, and $\Delta g\left(t_{0}, x_{0}\right) \leq 0$. Then on the one hand, at $\left(t_{0}, x_{0}\right)$, we have

$$
t \eta^{2}\left(\partial_{t} g-\Delta g\right)+t\left(2 \eta D \eta-\eta^{2} D v\right) \cdot D g \geq 0
$$

on the other hand, we also have

$$
t \eta^{2}\left(\partial_{t} g-\Delta g\right)+t\left(2 \eta D \eta-\eta^{2} D v\right) \cdot D g \leq g\left(1-\frac{2 \alpha}{n} g+\frac{C_{\alpha} t}{R^{2}}\right)<0
$$

which is a contradiction. Let R goes to infinity in (1.1), we have

$$
\frac{|D u|^{2}}{u^{2}}-\frac{\partial_{t} u}{u} \leq \frac{n}{2 t} .
$$

Finally, to prove the Harnack inequality, for $\left(t_{1}, x_{1}\right),\left(t_{2}, x_{2}\right) \in(0, T] \times \mathbb{R}^{n}$, take an arbitrary path $x(t)$ for $t \in\left[t_{1}, t_{2}\right]$ with $x\left(t_{1}\right)=x_{1}, x\left(t_{2}\right)=x_{2}$, then

$$
\begin{aligned}
\frac{d v(t, x(t))}{d t} & =v_{t}+D v \cdot \frac{d x(t)}{d t} \\
& \geq|D v|^{2}+D v \cdot \frac{d x(t)}{d t}-\frac{n}{2 t} \\
& \geq-\frac{1}{4}\left|\frac{d x(t)}{d t}\right|^{2}-\frac{n}{2 t} .
\end{aligned}
$$

then

$$
v\left(t_{1}, x_{1}\right) \leq v\left(t_{2}, x_{2}\right)+\frac{n}{2} \log \frac{t_{2}}{t_{1}}+\frac{1}{4} \int_{t_{1}}^{t_{2}}\left|\frac{d x(t)}{d t}\right|^{2} d t
$$

Let $x(t)=a t+b$, where

$$
a=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}, \quad b=\frac{t_{2} x_{1}-t_{1} x_{2}}{t_{2}-t_{1}} .
$$

Then

$$
v\left(t_{1}, x_{1}\right) \leq v\left(t_{2}, x_{2}\right)+\frac{n}{2} \log \frac{t_{2}}{t_{1}}+\frac{1}{4} \frac{\left|x_{2}-x_{1}\right|^{2}}{t_{2}-t_{1}}
$$

therefore

$$
\frac{u\left(t_{1}, x_{1}\right)}{u\left(t_{2}, x_{2}\right)} \leq\left(\frac{t_{2}}{t_{1}}\right)^{\frac{n}{2}} e^{\frac{\left|x_{2}-x_{1}\right|^{2}}{4\left(t_{2}-t_{1}\right)}} .
$$

A Supplementary Problem

For a bounded region $\Omega \subset \mathbb{R}^{n}$ and a positive constant T, if u satisfies

$$
\begin{aligned}
\partial_{t} u-\Delta u & =f, \quad \text { in } \Omega_{T}, \\
u(0, \cdot) & =u_{0}, \quad \text { on } \Omega, \\
u & =\varphi, \quad \text { on }(0, T) \times \partial \Omega .
\end{aligned}
$$

Show that

$$
\sup _{\Omega_{T}}|u| \leq C\left(\sup _{\Omega}\left|u_{0}\right|+\sup _{[0, T] \times \partial \Omega}|\varphi|+\sup _{\Omega_{T}}|f|\right),
$$

where $C=C(T, \Omega)$ is a positive constant.
For more materials, please refer to $[1,2,3,4]$.

References

[1] S. Alinhac, Hyperbolic partial differential equations, Universitext, Springer, Dordrecht, 2009.
[2] L. C. Evans, Partial differential equations, vol. 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1998.
[3] Q. Han and F. Lin, Elliptic partial differential equations, vol. 1 of Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1997.
[4] W. A. Strauss, Partial differential equations. An introduction, John Wiley \& Sons, Inc., New York, 1992.
Email address: jhzhang@math.cuhk.edu.hk

