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1. the maximum principles (heat equation)

Recall the maximum principles.

1.1. Notations. Let Ω ⊂ Rn be a bounded domain, we set ΩT := (0, T ] × Ω =
(t, x) : 0 < t ≤ T, x ∈ Ω, we denote by ∂pΩT the parabolic boundary of ΩT which
is defined as ∂pΩT := {t = 0} × Ω̄ ∪ (0, T ] × ∂Ω. As usual, we denote Br to be
the ball with radius r in Rn, we set Qr := (−r2, 0] × Br. Moreover, we denote by
Ca,b(ΩT ) the collection of functions in ΩT which are Ca in t and Cb in x.

1.2. Theorems.

Theorem 1 (Weak maximum principle). Let Ω ⊂ Rn be a bounded domain and T
be a positive constant. Let u ∈ C1,2(ΩT ) ∩ C(Ω̄T ) with ut − ∆u ≤ 0 (≥ 0) in Ω.
Then,

sup
ΩT

u = sup
∂pΩT

u (inf
ΩT

u = inf
∂pΩT

u).

Consequently, for u satisfies ut −∆u = 0,

inf
∂pΩT

u ≤ u(x) ≤ sup
∂pΩT

u, ∀x ∈ Ω.

Theorem 2 (Strong maximum principle). Let Ω ⊂ Rn be a bounded domain and
T be a positive constant. Let u ∈ C1,2(ΩT ) ∩ C(Ω̄T ) with ut −∆u ≤ 0 (≥ 0) in Ω,
and suppose there exists a point (τ, y) ∈ ΩT for which u(τ, y) = sup

ΩT

u (inf
Ω

u). Then

u ≡ u(τ, y) is constant in (0, τ) × Ω. Consequently the solution to heat equation
cannot assume an interior maximum or minimum value unless it is constant.

1.3. Applications. Let us show some results given by the mean value theorems
and the maximum principles.

Example 3 (Interior gradient estimates). Suppose u ∈ C1,2(Q1) ∩C(Q̄1) satisfies

ut −∆u = 0 in Q1.

Then there holds

sup
Q 1

2

|Du| ≤ c sup
∂pQ1

|u|,

where c = c(n) is a positive constant. In particular for any α ∈ [0, 1] there holds

|u(t, x)− u(t, y)| ≤ c|x− y|α sup
∂pQ1

|u|, ∀t > 0, x, y ∈ B 1
2
,

where c = c(n, α) is a positive constant.
1
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Proof. Direct computation shows that

(∂t −∆)(|Du|2) = −2

n∑
i,j=1

(Diju)
2 + 2

n∑
i=1

DiuDi(∂tu−∆u) = −2

n∑
i,j=1

(Diju)
2,

moreover,

(∂t−∆)(φ|Du|2) = (∂tφ−∆φ)|Du|2−4

n∑
i,j=1

DiφDjuDiju−2φ

n∑
i,j=1

(Diju)
2, ∀φ ∈ C1

0 (B1).

By taking φ = η2 for some η ∈ C1
0 (B1) with η ≡ 1 in B 1

2
, we obtain by the Hölder’s

inequality,

(∂t −∆)(η2|Du|2) =(2η∂tη − 2η∆η − 2|Dη|2)|Du|2

− 8η

n∑
i,j=1

DiηDjuDiju− 2η2
n∑

i,j=1

(Diju)
2

≤(2η∂tη − 2η∆η + 6|Dη|2)|Du|2 ≤ C|Du|2,

where C is a positive constant depending only on η. Moreover, since

(∂t −∆)(u2) = −2|Du|2 + 2u(∂tu−∆u) = −2|Du|2,

by choosing α large enough we get

∆(η2|Du|2 + αu2) ≤ 0,

then by the maximum principle, we have

sup
Q1

(η2|Du|2 + αu2) ≤ sup
∂pQ1

(η2|Du|2 + αu2),

which implies

sup
Q 1

2

|Du| ≤ c sup
∂pQ1

|u|,

where c = c(n) is a positive constant. Therefore we have

|u(t, x)− u(t, y)| ≤ c|x− y|α sup
∂pQ1

|u|, ∀t > 0, x, y ∈ B 1
2
.

□

Example 4 (Li-Yau estimate). Suppose u is a non-negative function satisfies

∂tu−∆u = 0 in (0, T ]× Rn.

Then there holds
|Du|2

u2
− ∂tu

u
≤ n

2t
,

In particular, for arbitrary (t1, x1), (t2, x2) ∈ (0, T ] × Rn with t2 > t1 > 0, there
holds

u(t1, x1)

u(t2, x2)
≤
(
t2
t1

)n
2

e
|x2−x1|2
4(t2−t1) .

Proof. We divide the proof into several steps.
Firstly, we derive some equations involving v = log u. For v, we have

∂tv −∆v = |Dv|2,
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moreover, denote w = |Dv|2, then

∂tw −∆w = 2Dv ·Dw − 2

n∑
i,j=1

(Dijv)
2.

Secondly, for α ∈ (0, 1), set f = α|Dv|2 − vt, then

∂tf −∆f = 2Dv ·Df − 2α

n∑
i,j=1

(Dijv)
2.

Since
n∑

i,j=1

(Dijv)
2 ≥ 1

n
(∆v)2 =

1

n
(|Dv|2 − vt) =

1

n

(
(1− α)|Dv|2 + f

)2
≥ 1

n

(
f2 + 2(1− α)|Dv|2f + (1− α)2|Dv|4

)
≥ 1

n

(
f2 + 2(1− α)|Dv|2f

)
,

therefore

∂tf −∆f ≤ 2Dv ·Df − 2α

n

(
f2 + 2(1− α)|Dv|2f

)
.

Thirdly, for arbitrary φ ∈ C∞
0 (Rn) with φ ≥ 0, let g = tφf, we have

tφ∂tf = gt −
g

t
,

tφDf = Dg − Dφ

φ
g,

tφ∆f = ∆g − 2
Dφ

φ
·Dg +

(
2
|Dφ|2

φ2
− ∆φ

φ

)
g.

Therefore substituting ∂tf , Df , ∆f by the above relations, we obtain

tφ(∂tg −∆g) + t(Dφ− φDv) ·Dg

≤g

[
φ− 2α

n
g + t

(
2
|Dφ|2

φ
−∆φ+

n

4α(1− α)

|Dφ|2

φ

)]
.

By letting φ = η2 for η ∈ C∞
0 (Rn) with η ≥ 0, we get

tη2(∂tg −∆g) + t(2ηDη − η2Dv) ·Dg

≤g

[
η2 − 2α

n
g + t

(
6|Dη|2 − 2η∆η +

n

α(1− α)
|Dη|2

)]
.

Let η0 be a cutoff function with 0 ≤ η0 ≤ 1 in B1 and η0 ≡ 1 in B 1
2
, then let

η(x) = η0(
x
R ), we have

tη2(∂tg −∆g) + t(2ηDη − η2Dv) ·Dg ≤ g

(
1− 2α

n
g +

Cαt

R2

)
.

We claim that

(1.1) 1− 2α

n
g +

Cαt

R2
≥ 0 in (0, T ]×BR.

Denote h := 1 − 2α
n g + Cαt

R2 , suppose to the contrary, that h has a negative min-
imum at (t0, x0) ∈ QT , then h(t0, x0) < 0, ∂th(t0, x0) ≤ 0, Dh(t0, x0) = 0, and
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∆h(t0, x0) ≥ 0, therefore g(t0, x0) > 0, ∂tg(t0, x0) ≥ 0, Dg(t0, x0) = 0, and
∆g(t0, x0) ≤ 0. Then on the one hand, at (t0, x0), we have

tη2(∂tg −∆g) + t(2ηDη − η2Dv) ·Dg ≥ 0,

on the other hand, we also have

tη2(∂tg −∆g) + t(2ηDη − η2Dv) ·Dg ≤ g

(
1− 2α

n
g +

Cαt

R2

)
< 0,

which is a contradiction. Let R goes to infinity in (1.1), we have

|Du|2

u2
− ∂tu

u
≤ n

2t
.

Finally, to prove the Harnack inequality, for (t1, x1), (t2, x2) ∈ (0, T ]× Rn, take
an arbitrary path x(t) for t ∈ [t1, t2] with x(t1) = x1, x(t2) = x2, then

dv(t, x(t))

dt
=vt +Dv · dx(t)

dt

≥|Dv|2 +Dv · dx(t)
dt

− n

2t

≥− 1

4

∣∣∣∣dx(t)dt

∣∣∣∣2 − n

2t
.

then

v(t1, x1) ≤ v(t2, x2) +
n

2
log

t2
t1

+
1

4

∫ t2

t1

∣∣∣∣dx(t)dt

∣∣∣∣2 dt.
Let x(t) = at+ b, where

a =
x2 − x1

t2 − t1
, b =

t2x1 − t1x2

t2 − t1
.

Then

v(t1, x1) ≤ v(t2, x2) +
n

2
log

t2
t1

+
1

4

|x2 − x1|2

t2 − t1
,

therefore
u(t1, x1)

u(t2, x2)
≤
(
t2
t1

)n
2

e
|x2−x1|2
4(t2−t1) .

□

A Supplementary Problem

For a bounded region Ω ⊂ Rn and a positive constant T , if u satisfies

∂tu−∆u =f, in ΩT ,

u(0, ·) =u0, on Ω,

u =φ, on (0, T )× ∂Ω.

Show that

sup
ΩT

|u| ≤ C

(
sup
Ω

|u0|+ sup
[0,T ]×∂Ω

|φ|+ sup
ΩT

|f |

)
,

where C = C(T,Ω) is a positive constant.
For more materials, please refer to [1, 2, 3, 4].
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